Brain-repair discovery could lead to new epilepsy treatments
Research News Release
EurekAlert! provides eligible reporters with free access to embargoed and breaking news releases.
Eligibility GuidelinesEurekAlert! offers eligible public information officers paid access to a reliable news release distribution service.
Eligibility GuidelinesEurekAlert! is a service of the American Association for the Advancement of Science.
Researchers have discovered a previously unknown repair process in the brain that they hope could be harnessed and enhanced to treat seizure-related brain injuries.
Mount Sinai researchers have developed a therapeutic agent that shows high effectiveness in vitro at disrupting a biological pathway that helps cancer survive, according to a paper published in Cancer Discovery, a journal of the American Association for Cancer Research, in July.
Every drug starts with the search for an active substance targeting disease-related key players. However, there is no perfect drug that affects the one target: no effect without side effects. A group led by Prof. Herbert Waldmann and Dr. Slava Ziegler at the Max Planck Institute of Molecular Physiology in Dortmund has now identified an unexpected effect for a group of characterized active substances: they all modulate cholesterol metabolism, a home-made problem, as it seems.
Safe and effective vaccines offer hope for an end to the COVID-19 pandemic. However, the possible emergence of vaccine-resistant SARS-CoV-2 variants, as well as novel coronaviruses, make finding treatments that work against all coronaviruses as important as ever. Now, researchers reporting in ACS' Journal of Proteome Research have analyzed viral proteins across 27 coronavirus species and thousands of samples from COVID-19 patients, identifying highly conserved sequences that could make the best drug targets.
The importance of aryl sulfides in biologically active compounds has led chemists to develop methods to synthesize them from carbon-sulfur bond forming reactions. The conventional reaction, however, uses thiols that are foul-smelling and toxic. Now, chemists from Waseda University, Japan, report a novel, thiol-free synthesis technique comprising a nickel-catalyzed aryl exchange between 2-pyridyl sulfide and aromatic esters, providing a versatile and inexpensive technology for both scientific and industrial applications.
A new approach to treating breast cancer kills 95-100% of cancer cells in mouse models of human estrogen-receptor-positive breast cancers and their metastases in bone, brain, liver and lungs. The newly developed drug, called ErSO, quickly shrinks even large tumors to undetectable levels.
A Michigan State University researcher is leading an international team of scientists to develop a low-cost, practical biopolymer dressing that helps heal chronic wounds.
Researchers at Children's Hospital of Philadelphia (CHOP) have developed a novel method for producing new antibiotics to combat resistant bacteria. Through an approach that would target bacteria with an antibiotic that is masked by a prodrug, which the bacteria would themselves remove, the researchers identified a method that would allow for development of new, effective antibiotics that could overcome issues of resistance. The findings were published today in eLife.
An experimental drug reported in Nature Communications suggests that a "path is clearly achievable" to treat currently untreatable cases of cystic fibrosis disease caused by nonsense mutations. This includes about 11 percent of cystic fibrosis patients, as well as patients with other genetic diseases, including Duchenne muscular dystrophy, β-thalassemia and numerous types of cancers, that are also caused by nonsense mutations.
An oral prodrug developed by a team of scientists led by Binghe Wang, Regents' Professor of Chemistry at Georgia State University, delivers carbon monoxide to protect against acute kidney injury, according to a new paper published in Chemical Science.