
Tweezers of sound can pick objects up without physical contact
Research News Release
EurekAlert! provides eligible reporters with free access to embargoed and breaking news releases.
Eligibility GuidelinesEurekAlert! offers eligible public information officers paid access to a reliable news release distribution service.
Eligibility GuidelinesEurekAlert! is a service of the American Association for the Advancement of Science.
Tokyo, Japan - Researchers from Tokyo Metropolitan University have developed a new technology which allows non-contact manipulation of small objects using sound waves. They used a hemispherical array of ultrasound transducers to generate a 3D acoustic fields which stably trapped and lifted a small polystyrene ball from a reflective surface. Although their technique employs a method similar to laser trapping in biology, adaptable to a wider range of particle sizes and materials.
As reported in Advanced Photonics, researchers from Shanghai University and Fudan University developed a general framework and metadevices for achieving dynamic control of THz wavefronts. Instead of locally controlling the individual meta-atoms in a THz metasurface (e.g., via PIN diode, varactor, etc.), they vary the polarization of a light beam with rotating multilayer cascaded metasurfaces.
According to the United Nations' telecommunications agency, 93% of the global population has access to a mobile-broadband network of some kind. With data becoming more readily available to consumers, there is also an appetite for more of it, and at faster speeds.
Houston Methodist Neurological Institute researchers from the department of neurosurgery shrunk a deadly glioblastoma tumor by more than a third using a helmet generating a noninvasive oscillating magnetic field that the patient wore on his head while administering the therapy in his own home. The 53-year-old patient died from an unrelated injury about a month into the treatment, but during that short time, 31% of the tumor mass disappeared. The autopsy of his brain confirmed the rapid response to the treatment.
The lithium-ion battery is the future of sustainable energy technology, but drastic volume fluctuations in their anodes related to enhanced battery capacity raises a safety concern. Recently, researchers from the Republic of Korea have found that embedding manganese selenide anodes in a 3D carbon nanosheet matrix is an innovative, simple, and low-cost means of reducing drastic volume expansion while improving the energy density of these batteries.
UC San Diego engineers developed a soft, stretchy ultrasound patch that can be worn on the skin to monitor blood flow through vessels deep inside the body. Such a device can make it easier to detect cardiovascular problems, like blockages in the arteries that could lead to strokes or heart attacks.
University of Washington researchers have developed a method that uses a gaming graphics card to control plasma formation in their prototype fusion reactor.
An international physics team with the participation of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has proposed a new concept that may allow selected cosmic extreme processes to be studied in the laboratory in the future. A special setup of two high-intensity laser beams could create conditions similar to those found near neutron stars, for example. An antimatter jet is generated and accelerated very efficiently, as the experts report in the journal Communications Physics (DOI: 10.1038/s42005-021-00636-x).
New European Union regulations on batteries could offer a huge boost to the global decarbonisation mission - but only if it leverages its political and economic weight to ensure a fairer global marketplace.
Researchers have created butterflies that flap their wings, flower petals that wiggle with the touch of a button and self-folding origami drawing on new advances in soft robotics.