
Meet the Martian meteorite hunters
Research News Release
EurekAlert! provides eligible reporters with free access to embargoed and breaking news releases.
Eligibility GuidelinesEurekAlert! offers eligible public information officers paid access to a reliable news release distribution service.
Eligibility GuidelinesEurekAlert! is a service of the American Association for the Advancement of Science.
A team at the Natural History Museum (NHM), London is paving the way for future rovers to search for meteorites on Mars. The scientists are using the NHM's extensive meteorite collection to test the spectral instruments destined for the ExoMars rover Rosalind Franklin, and develop tools to identify meteorites on the surface of the red planet. The project is being presented today (23 July) at the virtual National Astronomy Meeting 2021.
A serendipitous flythrough of the tail of a disintegrated comet has offered scientists a unique opportunity to study these remarkable structures, in new research presented today at the National Astronomy Meeting 2021.
Scientists knew a burst of UV light left its mark on our solar system. Now they know the source of that light.
Meteorites that do not experience high temperatures at any point in their existence provide a good record of complex chemistry present when or before our solar system was formed. So researchers have examined individual amino acids in these meteorites, many of which are not in present-day organisms. In Physics of Fluids, researchers show the existence of a systematic group of amino acid polymers across several members of the oldest meteorite class, the CV3 type.
Combining atomic-scale sample analysis and models simulating likely conditions in the nascent solar system, the study revealed clues about the origin of crystals that formed more than 4.5 billion years ago. The findings provide insights into the fundamental processes underlying the formation of planetary systems, many of which are still shrouded in mystery
A new study led by Mohamad Ali-Dib, a research scientist at the NYU Abu Dhabi Center for Astro, Particle, and Planetary Physics, reports the significant discovery that two groups of TNOs with different surface colors also have very different orbital patterns. This new information can be compared to models of the solar system to provide fresh insights into its early chemistry.
New UArizona research finds that the target asteroid of NASA's Psyche mission may not be as metallic or dense as previously predicted, hinting that it might not be an exposed planetary core after all.
A research group from Kobe University has demonstrated that the heat generated by the impact of a small astronomical body could enable aqueous alteration and organic solid formation to occur on the surface of an asteroid. These results have significantly increased the number of prospective astronomical bodies that could have brought water and the origins of life to Earth.
Comets that circle the Sun in very elongated orbits spread their debris so thin along their orbit or eject it out of the solar system altogether that their meteor showers are hard to detect. From a new meteor shower survey published in the journal Icarus, researchers now report that they can detect showers from the debris in the path of comets that pass close to Earth orbit and are known to return as infrequent as once every 4,000 years.
Unbound nickel atoms and other heavy elements have been observed in very hot cosmic environments, including the atmospheres of ultra-hot exoplanets and evaporating comets that ventured too close to our Sun or other stars. A new study conducted by JU researchers reveals the presence of nickel atoms in the cold gasses surrounding the interstellar comet 2I/Borisov. The team's finding is being published in Nature on 19 May 2021.